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Recent developments in technology have made it possible to

create high resolution genome-wide maps of histone marks,

DNA binding proteins and physical interactions along genomic

regions. Chromatin features are found together in different

combinations, dividing the genome up into domains with

distinct functional properties. Microscopy and chromatin

conformation capture techniques have shown that the 3D

structure of chromosomes is constrained by nuclear features

and functional links between different parts of chromatin. These

results provide insights about the 3D and domain organization

of the genome and their connection to gene regulation and

other nuclear functions.
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Introduction
The spatial organization and compartmentalization of the
genome is likely to be of great importance for the regu-
lation of gene expression and other nuclear functions.
Recent advances in genome-wide mapping technology
have allowed the inference of the 3D topology and
protein packaging of the genome, giving insights into
how domains and spatial organization lead to function.
This review covers recent developments in this field.

Chromosome territories
Interphase chromosomes are not positioned randomly in
the nucleus, but occupy spatially distinct regions, called
chromosome territories (reviewed in [1]). The develop-
ment of chromosome conformation capture (3C) and its
derivatives allows the examination of the organization of
the chromosomes and chromatin at high resolution. Briefly,
the technique uses formaldehyde fixation to cross-link
genomic regions that are in close proximity in vivo. Neigh-
bouring DNA fragments are then allowed to form unique
products via ligation [2]. With high-throughput sequencing
this technique can be applied to whole genomes (Hi-C),

rather than just selected loci [3]. This has enabled the
creation of three dimensional models of the interactions of
whole genomes (Figure 1a,b).

Data sets created by this technique confirm that there is
little interplay between the chromosomes, with intra-
chromosomal interactions dominating [3–5]. In S. cerevi-
siae, this bias is inversely correlated with size. Small
chromosomes have relatively frequent interactions with
other chromosomes, but large chromosomes mainly have
self interactions [5]. A similar phenomenon is also
observed in human lymphoblasts: the smaller gene-rich
chromosomes, which are found in the centre of nucleus,
preferentially interact. The exception is chromosome 18,
which is short but gene poor, and is not enriched for inter-
chromosomal interactions [3].

Chromosome arms also appear to have their own terri-
tories. Few interactions are observed between chromo-
some arms in Drosophila [6!!,7]. A pericentric inversion
that swapped two chromosomal segments to the opposite
arm caused these two segments to lose contacts with their
former neighboring sequences, and gain contacts with
their new neighbors [6!!]. This indicates that the linear
structure of chromosomes dictates to a large extent which
contacts are possible, and suggests that centromeres can
be a barrier to interaction.

The formation of translocations is also driven by spatial
proximity. Genome wide mapping of translocations with
the Myc or IgH loci showed that when a double stranded
break could not be repaired at the original site of damage,
there was still a strong preference for intra-chromosomal
translocations, even up to 60 MB away [8,9]. The fre-
quency of inter chromosomal translocations was predicted
by the Hi-C contact probability of the two chromosomes
[10] and is also reflected in oncogenic transformations.
Burkitt’s lymphoma is characterized by a translocation
between MYC and one of three immunoglobulin variants,
all of which are on different chromosomes. MYC:IGH is
the most common translocation, as IGH is spatially the
closest immunoglobulin to Myc, compared to MYC:IGK
which occurs less frequently and is the most distant
translocation [11].

3D domain organization of chromosomes
Hi-C studies have identified general principles of chro-
matin organization that are conserved across species
[3,5,7,12!,13]. At the coarsest level (at megabase scale),
the genome is divided into two types of domains, which
can be roughly characterized as transcriptionally active
and inactive regions. There are minimal interactions
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Chromatin conformation capture and chromatin feature mapping provide information about the domain and 3D structure of the genome. (a)
Interactions between genomic regions as shown by Hi-C. Regions in close proximity are fixed and ligated together, and high throughput sequencing is
used to produce a genome-wide contact matrix. The matrix shown here corresponds to cis interactions along a hypothetical genomic region, with pixel
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between the two types, even when they are linearly close
together on the same chromosome [3].

More recent advances in sequencing technology have
allowed a higher resolution view of genome wide inter-
actions. This showed that within the larger Mb size active
and inactive domains, there are smaller nested domains.
These domains contain extensive cis interactions, while
contacts between such domains are much less frequent.
Mice and humans share this chromatin architecture of
domains and subdomains, which remain largely stable
even between different cell types [12!,14!!]. The bound-
aries between interaction domains are enriched for the
insulator protein CTCF, and often mark the transition
between lamina associated domains (LADs) and non-
LADs in the genome, or transitions between early and
late replicating regions [7,12!,14!!]. Factors in the border
region are partially responsible for domain separation.
This was shown by the deletion of the border region
between Xist-Tsix in mouse ESCs. Normally these two
genes are in separate topologically associating domains
(TADs), but after the border deletion, associations
increase between the two domains [14!!]. This shows
that elements within the border region are required to
block interactions. As the domains did not completely
merge, factors outside the border regions are also involved
in maintaining boundaries.

Chromosome organization and gene
regulation
Some domains can grow or shrink as cell specific genes are
activated. This is highlighted in the Hox complex, where
the genes are linearly organized in order of their sequen-
tial activation. A study in mouse tissues found that when
the cluster is inactive, it forms a single 3D domain
separated from its flanking regions. As genes are progress-
ively switched on it forms two domains, where the newly
transcriptionally active genes transfer to the active
domain [15!!].

Within TADs, gene activation can involve the creation of
loops between enhancers and promoters that are some
linear distance away. In some instances, such contacting
elements can be located on two different chromosomes
[16]. DNaseI hypersensitive sites (DHSs) can be used to
map potential regulatory sites, including promoters,
enhancers and insulators. Most human promoters are
linked with more than one distal DHS [16,43]. However,
many occur in very few cells [3]. Therefore, bioinforma-
tically identified loops must be verified for functional
importance. For example, in erythroid cells, when b-globin

is switched on, a loop between its promoter and the locus
control region (LCR) is formed, involving the transcription
factor GATA1 and cofactor Ldb1, which cannot directly
bind DNA. Tethering Ldb1 to the b-globin promoter in
GATA1 null cells, which normally cannot express b-glo-
bin, recreates the link between the promoter and the LCR,
reactivating the gene [17!!]. This confirms the importance
of this loop for proper gene activity.

Because looping interactions are mostly stochastic, their
regulatory effects may be variable from cell to cell. This
was indeed observed when the human b-globin LCR was
integrated into the genome of mouse cells. In liver cells
this ectopic LCR was found to contact the endogenous b-
globin locus located on a different chromosome with low
frequency. Strikingly, in the cells where this contact
occurred, high expression of one of the b-globin genes
was often triggered [18!]. Although the experimental
setting was somewhat artificial, these data show that
contacts between regulatory elements on different
chromosomes in principle can contribute to gene regula-
tion. The stochastic nature of these contacts appears to
compromise regulatory robustness.

Computational modelling of chromosome
topology
Computational modelling can provide additional valuable
insights into chromosome structure. A recent computer
simulation study found that only a handful of basic
constraints — centromeres should be attached to the
spindle pole body; telomeres should be located at the
nuclear periphery; and only rDNA loci can access the
nucleolus — could account for much of the spatial organ-
ization of all chromosomes in S. cerevisiae, including the
propensity for particular chromosomes to interact [19!].
Fascinatingly, this modelling technique was also able to
predict the location of some gene territories with high
correlation to fluorescence imaging derived positions. It
also predicted correctly that tRNA genes and early repli-
cation sites each have significant spatial clustering [19!].
This suggests that some interactions in yeast are passively
maintained by spatial constraints in the nucleus, rather
than actively driven by interaction motifs.

Interaction of chromatin with nuclear
landmarks
Major structural elements of the nucleus are known to
interact with particular genomic regions. The nuclear
lamina (NL), which lines the inner membrane of the
nucleus, is thought to act as a repository for large regions
of transcriptionally inactive chromatin, known as lamina
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(Figure 1 legend continued) color corresponding to total number of reads. This shows that the region is divided into domains with high levels of local
interactions, but also shows some interactions between domains. (b) A cartoon interpretation of the Hi-C data as separate clusters of DNA. (c)
Classification of chromatin types. In this hypothetical example seven different chromatin proteins were mapped along a region of the genome.
Computational algorithms can be then applied to divide the genome into different domains that have a similar composition. The proteins are shown on
(b) as different colored circles, showing that the borders of different chromatin domains also often correspond with the borders of TADs.
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associated domains (LADs) [20,21]. LADs are often hun-
dreds of kilobases in length and many are evolutionarily
conserved in humans and mice [22].

The vast majority of genes in LADs are repressed [20,21],
and during differentiation hundreds of genes change
position relative to the NL, concomitant with changes
in their expression status [23]. A study in C. elegans
showed the knockdown of their sole lamin gene shifts
heterochromatin away from the nuclear periphery [24].
Similarly, a transcriptionally inactive gene cluster in
Drosophila cells moved to the nuclear interior and became
activated upon depletion of the B-type lamin [25]. In
contrast, double knockout of the two B-type lamin genes
in murine embryonic stem cells, which also lack Lamin A/
C expression, showed that lamins are not required for self-
renewal and nor did their loss affect gene expression [26].
They were however required for spindle orientation and
proper organogenesis, suggesting an important role in
tissue formation.

What targets LADs to the NL? H3K9 methylation has
been found to have a role in the localization of hetero-
chromatin at the nuclear periphery in C. elegans. The
histone methyltransferase MET-2 causes monomethyla-
tion and dimethylation of H3K9, following which SET-25
deposits H3K9me3 [27!]. Without these enzymes, het-
erochromatic regions were released from the NL. In mice,
two redundant methylases Prdm3 and Prdm16 direct
H3K9 monomethylation in the cytoplasm, and in the
nucleus, Suv39h enzymes cause H3K9me3 methylation
[28]. Depletion of Prdm3/16 resulted in disruption of
heterochromatin foci and a disorganized NL, but it is
unclear whether the two phenomena are directly related.

Besides histone modifications, it is likely that certain
DNA sequences also target genes to the NL, similar to

the targeting of genes to nuclear pore complexes in yeast
by specific DNA ‘zip codes’ [29]. Recently, it was
suggested that GA repeats can direct certain human
LADs to the NL [30], but a genome-wide study of repeats
did not find GA repeats to be enriched in human LADs
[20], leaving the majority of the targeting unexplained. It
has also been found that DNA in LADs that are con-
served between cell types is generally A/T-rich [22], but it
is unknown if there is mechanism that links this sequence
bias with the NL.

The surface of the nucleolus is also a repository for
heterochromatin. Genome-wide surveys have identified
nucleolus associated domains (NADs) on most human
chromosomes [31,32]. Interestingly, there is considerable
overlap between NADs and LADs. It is not known if the
same factors are involved in sequestering heterochroma-
tin at the nucleolus and at the NL, but the overlap
suggests that shared mechanisms may be at work.

Defining chromatin domains by protein
composition
Principles of chromosome organization have also been
revealed by the systematic mapping of genome-wide
occupancy patterns of histone modifications and chroma-
tin proteins. Recently several groups have used collec-
tions of these maps, across several species and many cell
types, to segment the genome into different chromatin
domains (Table 1) (Figure 1b,c). Analysis of binding
maps of 53 chromatin proteins in Drosophila Kc167 cells
[33] indicated that the genome is covered by five principal
chromatin types, including a new repressive chromatin
type, BLACK, that covers around half the genome and
lacks classical heterochromatin markers. These chroma-
tin types also correspond reasonably well with TADs,
with the borders between chromatin domains roughly
matching the borders between TADs [7].
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Table 1

Genome wide surveys of chromatin domain types

Species Cell type # of factors/marks # of types Features described Reference

D. melanogaster Kc 53 proteins 5 Repressed, tissue specific active, broadly
expressed active, polycomb

[33]

D. melanogaster S2, BG3 18 histone marks 9 Active, transcriptional elongation, intronic, X chr,
heterochromatin, polycomb, repressed

[36]

H. sapiens CD4 T cells 38 histone marks
+ H2AZ, PolII, CTCF

51 Promoter, transcribed, active intergenic,
repressed, repetitive

[37]

H. sapiens 9 cell lines 9 histone marks + CTCF 15 Promoter, enhancer, insulator, transcription,
polycomb, repressed, repetitive

[38]

H. sapiens 6 cell lines 8 histone marks, PolII,
CTCF, DNase
hypersensitive sites

7 CTCF, enhancer, transcribed, repressed,
promoter

[39]

H. sapiens 5 cell lines 117 TFs 6 Binding active or inactive; high or low cobinding;
regulator regions proximal or distal to genes.

[35]

H. sapiens ES, K562 29 chromatin features 4 Initiation, transcript, polycomb, heterochromatin [40]
A. thaliana Seedlings 12 histone marks 8 Active, repressive, repetitive, intergenic [41]
C. elegans Embryos, L3 larvae 21 chromatin features 3 Active, repressive, dosage compensation [42]
C. elegans Embryos, L3 larvae 28 chromatin features 5 Active, repressive, X chromosome [34]
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While there is some overlap, each protein mapping survey
has identified a different set of chromatin domains. The
domains range in resolution from chromosome scale
repressive versus active domains [34], to features map-
ping to TADs and LADs [33], and to promoter, exon and
intron specific states [35]. The selection of factors ana-
lysed is linked with the types of domains identified. For
example, H3K9ac and H3K4me2/me3 are localized to
transcription start sites and inclusion of these marks can
help resolve these features [36]. However, the clustering
of particular combinations of smaller domains along the
genome has been shown to create larger domain types
[36]. This shows that new information can be found when
looking at the genome at different scales.

Conclusion and future perspectives
The recent production of many genome-wide datasets
has resulted in a better understanding of the organization
of interphase chromosomes, both in terms of three-
dimensional structure and in terms of domains of similar
chromatin features. The next challenge will be to unravel
the cause-consequence relationships: to what extent do
spatial folding and domain organization matter for gene
regulation? New high throughput methods to query the
effects of different genomic contexts on transcription will
be an important tool for addressing such questions.

The large variation in the frequency of detection of
different chromatin conformations suggests that not all
interactions are equally important. Furthermore, the sto-
chastic nature of these conformations and states poses the
question of how robust gene regulation is achieved. De-
velopment of new single cell techniques to study these
phenomena — ideally genome-wide — will be necessary
to tackle these issues.

Many of the chromatin domains that have been identified
have sharp boundaries, and while recent work on insula-
tors has made some progress in understanding what
maintains these boundaries, we cannot explain them
all. Techniques which can manipulate these domains,
including systematic disruptions of putative boundary
elements by genetic manipulation, will help to explore
the functional importance of different types of elements
in different contexts.

With the rapidly expanding pool of publicly available data
mapping the state of chromatin, the future looks bright for
the study of chromatin organization. This will aid in un-
derstanding the molecular mechanisms controlling chro-
matin organization, and the role of genome organization in
regulating gene regulation and other nuclear functions.
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