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Abstract
Transcription factors (TF) bind DNA sequence motifs, but the presence of a consensus DNA
element is not sufficient to direct TF binding to chromatin. Recent genomic data have revealed
that accessibility, as measured by DNase sensitivity and the presence of active histone marks, is
necessary for TF binding. DNA sequence provides the initial specification of the accessibility of
DNA elements within chromatin that permits TF binding. In yeast, it is known that poly(dA-dT)
tracts directly encode low-nucleosome occupancy at promoters. Recent evidence suggests that
CpG islands in mammals are inherently refractory to higher-order chromatin structure and remain
accessible, despite favoring nucleosome formation in vitro. Taken together, these studies support a
model for how accessibility originates and then propagates throughout regulatory cascades and
development.

Introduction
Specific DNA sequence elements are sufficient to direct transcription factor (TF) binding in
prokaryotes; however, in higher organisms, chromatin often occludes TF binding [1–4]. In
eukaryotes, DNA is wrapped around nucleosomes and forms higher order chromatin
structures that restrict TF access. The first high resolution in vivo measure of the
accessibility of chromatin structure came from the study of candidate heat shock genes [5].
DNase I footprinting revealed that the 5′ end of Hsp70 and Hsp83 were highly sensitive to
digestion prior to heat shock induction [5]. Post-translational modifications of histones
provide an independent measure of chromatin structure. For instance, histone acetylation is
associated with actively transcribed genes [6,7], but can also be a precursor to transcription
and permit subsequent activation [8]. DNase I signals overlap with histone acetylation marks
[9], suggesting that histone acetylation contributes to the molecular basis for DNase I
sensitivity. Multiple types of histone acetylation and H3K4 methylation often co-occur and
are associated with transcriptionally active or potentiated chromatin [10–13]. Recently,
André Martins developed a probabilistic model that infers DNase I sensitivity from histone
modification data, reinforcing the qualitative link between DNase sensitivity and active
histone marks with a quantitative model [14]. (Fig. 1)
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Early studies revealed that TF bound DNA and DNase I sensitivity co-occurred at candidate
promoters [5,15]; however, these measurements did not resolve the causality of either event.
Did pre-existing DNase I hypersensitivity permit TF binding or did TF binding affect the
local chromatin environment? Candidate gene analyses have shown that accessible
chromatin correlated with inducibly-bound TF binding sites for several factors [16–18]. To
test whether accessible chromatin was necessary and sufficient to direct TF binding to
consensus elements, genomic assays were needed to examine the comprehensive set of
bound target elements and unbound consensus elements. The recent advent of molecular
genomics approaches that measure both the accessibility of DNA (DNase-seq, FAIRE-seq,
and ChIP-seq) [19–21] and the inducible binding of transcription factors (ChIP-seq)
[10,12,22,23] allows this causality to be addressed in a comprehensive manner.

Genomic assays reveal that active chromatin is required for TF binding
The first genome-wide study looking at histone marks and inducible TF binding indicated
that active chromatin marks preceded TF binding [24]. The authors found that STAT1
binding sites were marked by H3K4 methylation prior to interferon-induced STAT1 binding
[24]. These data suggested that an active chromatin state is necessary for inducible binding.
However, it remained unclear if potential, but unoccupied, STAT1 binding sites also
harbored active marks, but remained unbound after stimulation.

To test whether or not potential binding sites in active chromatin remain untargeted, we
directly compared the chromatin landscape (histone modification and chromatin associated
factors) at inducibly-bound, heat shock factor (HSF) DNA elements (HSEs) to unoccupied
HSEs [10]. We found that inducibly-bound HSEs resided in chromatin characterized by
histone acetylation and H3K4 methylation and unbound HSEs lacked these histone marks
(Fig. 2). A similar study showed that the glucocorticoid receptor (GR) specifically binds to
target elements that are pre-marked by DNase I hypersensitive signal prior to ligand
treatment [12]. Taken together, these data indicate that TFs are specifically targeted to
consensus elements within a region of active chromatin.

The previously mentioned studies were performed in cell lines with an inducing agent
(interferon, hormone, and heat stress), but defining the temporal order of chromatin
structural change and TF binding is more difficult within a developing organism. Multiple
cell types can confound the quantitative analysis of both TF binding and chromatin
structure. Additionally, the analysis requires capturing cells at a stage just prior to a TF
binding, which is difficult to accomplish in a manner that does not perturb the
developmental process [25,26]. To overcome these limitations and study the context-
dependent manner of transcription factor binding in erythroid differentiation, Wu et al.
generated an inducible GATA1 cell line [27]. They found that erythroid progenitors lacking
GATA1 retain the chromatin state (H3K4 methylation and DNase I sensitivity) that is
permissive for binding [27]. Others have captured the early events in the reprogramming of
differentiated cells to induced pluripotent stem cells (iPSC) using an assay that allows for
cells to be distinguished by their number of cell divisions [28]. Reprogramming is initiated
by ectopic expression of Oct4, Sox2, Klf4, and c-Myc, and the authors showed that the
primary targets of these factors pre-exist in an accessible state [28].

A special class of TFs termed “pioneer factors” are often the first detectable transcription
factors binding a region of chromatin in vivo and can access nucleosomal DNA in vitro [29].
Recent genomic studies have shown that H3K4 methylation and DNase I sensitivity
precedes binding of the pioneer factors FoxA1 and GATA1 [18,27,30]. FoxA1's high
affinity for nucleosomal DNA [29] likely allows FoxA1 to bind to transiently accessible
chromatin that may be inaccessible to other factors (reviewed in [31]), but the in vivo
evidence suggests that these sites are not heterochromatic. Here we use “heterochromatic” to
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refer to the annotation of chromatin states defined by the presence and absence of specific
chromatin marks that likely result in higher order chromatin structure [11,13]. FoxA1 and
other TFs are defined as pioneers, because they precede binding of other TFs. These studies
indicate that the mechanism and function of pioneer factor binding is not appreciably
different from TFs that are not considered pioneers: both classes bind to relatively
decondensed chromatin marked by active histone marks and subsequently reinforce and
expand the accessible region [10,12,32].

We propose that many factors have the potential to pioneer a region. For instance, AP1
binding precedes GR binding and maintains accessible chromatin at over 70% of GR
binding sites, but it seems that GR is acting as a classical pioneer at 15% of the binding sites
[12,32]. We have found that the presence of GAGA Associated Factor (GAF) at HSEs
positively influences HSF binding at a subset of sites [33].

Accessibility increases concomitantly upon Transcription Factor binding
Just as chromatin landscape influences TF binding, so does TF binding influence chromatin
state. The histone marks and DNase I signal that are predictive of TF binding also increase
in intensity upon inducible binding [5,10,12,19–23,34,35]. This observation is consistent
with the role of TFs in recruiting coactivator complexes that are capable of modifying
histone tails and remodeling nucleosomes [24,36–43]. Concomitant increases in locus
accessibility may reinforce and expand the boundaries of accessible chromatin to allow
access for other TFs and large molecular complexes. This cascade can lead to accumulation
of paused RNA polymerase II near promoters, which can exclude nucleosomes from
promoters and help maintain an active and factor-accessible chromatin state [44,45].

Sequence composition encodes accessible chromatin
The mechanism by which accessibility originates to allow TF binding is an unresolved but
active subject of investigation. Ultimately, DNA sequence must direct the origin of
accessible DNA. In yeast, the low nucleosome density at promoters is largely specified by
DNA sequence, mainly poly(dA-dT) tracts, producing promoters that are generally devoid
of nucleosomes permitting TF access [17,46,47].

CpG islands, which are hallmarks of approximately 60% of human and mouse promoters
[25,48], favor nucleosome formation in vitro [49], but are nucleosome-depleted in vivo [50].
It seems counterintuitive that the DNA sequence of CpG island regulatory elements would
favor nucleosome formation. We hypothesize that CpG island sequence is inherently
refractory to higher order compaction by linker histones and retains the chromatin in a
transiently accessible state amenable to TF binding.

It has been known for over 40 years that linker histones, like H1, preferentially bind AT-rich
linker DNA (reviewed in [51]). Recently, the molecular interactions that are responsible for
this selectivity have been characterized [52]. In short, the nonpolar region of the linker
histone's globular domain preferentially interacts with the thymine methyl groups through
hydrophobic interactions [52]. These data support the hypothesis that CpG islands are
refractory to higher-order compaction in vivo. Nonetheless, this does not completely explain
the fact that CpG island promoters are generally highly accessible in vivo [50], despite
favoring nucleosome assembly in vitro [49]. TFs are highly bound to CpG islands in vivo, so
it is clear that their elements are initially accessible and that TF binding propagates a more
accessible chromatin landscape. Consistent with this idea, CpG islands were found to be
sufficient to direct the de novo recruitment of the CxxC finger protein 1 (Cfp1) and
subsequent H3K4 methylation [53]. Cfp1 is a component of the Set1 H3K4 methylation
complex [54], and has been shown to interact with unmethylated CpG-rich DNA in vitro
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[55]. Methylation of H3K4 is inhibitory to DNA methylation, so H3K4 methylation may
also reinforce and maintain the unmethylated DNA state of CpG islands [56]. KDM2A, a
H3K36 demethylase, also targets linker DNA between nucleosomes in CpG islands by a
CxxC zinc finger domain protein [57,58], consistent with the idea that CpG islands do not
efficiently incorporate linker histones for compaction.

Non-CxxC zinc finger proteins must also target the linker DNA between nucleosomes at
CpG islands, and in fact, mammalian sequence-specific TFs, as a class, have a GC-bias in
their cognate binding sites [59] and TFs bind to GC-rich regions in vivo [50]. Thus, CpG
islands, which constitute a majority of mammalian promoters, have inherent properties
amenable for TF binding. Although these GC-rich sequences can interact with nucleosomes,
they appear to be dissuaded from higher-order packing and are enriched for TF binding
elements. Importantly, CpG island promoters can be found in a repressive state in vivo, so
repressive TFs and cofactors can also bind to the region and precipitate repressive chromatin
and further condensation.

This model of CpG island structure and function is highlighted by the example of embryonic
stem cell differentiation. CpG island promoters that are uncommitted to the repressive or
active state, so-called bivalent promoters, are highly depleted of DNA elements that are the
targets of TFs that are expressed in the embryonic stem cell [60,61]. These same promoters
in differentiated cells are highly acetylated and more accessible, presumably because these
cells express TFs that are competent to bind the region and tilt the balance from the bivalent
to the active state [60,62].

The DNA sequence of Drosophila, which is not enriched for CpG-island and poly(dA-dT)
tracts in its promoters, can also influence TF binding. A recent study has shown that the high
GC content in the 10kb flanking Male-specific lethal (MSL) binding sites can influence
MSL binding [63]. We speculate that the sequence in flanking regions of Drosophila also
may occlude higher order chromatin compaction.

Our model: DNA sequence directs chromatin structure to allow TF binding
We propose that DNA sequences that inherently promote unstable nucleosomes (AT-rich
stretches) or disfavor higher order compaction (CpG islands) are sufficient to keep
chromatin in a state that is at least transiently accessible to TF binding and uncommitted to
the repressive or active transcription state (Figure 3A). Throughout development, or in
response to regulatory cascades, previously unexpressed or inactive TFs (often pioneer TFs)
and nucleosome modifying enzymes are targeted to their cognate binding sites (Figure 3B)
through their interaction with accessible DNA (often CG-rich, unmethylated, linker DNA
between nucleosomes). Targeting of the TFs cause subsequent hyper-modification of
histones in the region and tilt the balance toward the repressive or active state, as directed by
the TFs (Figure 3B). Subsequent recruitment of cofactors or RNA polymerase itself is
sufficient to enhance and expand the boundaries of the accessible or inaccessible chromatin
(Figure 3C). In some cases, TF binding will directly or indirectly activate or repress the
transcription of other sequence-specific TFs or cofactors (Figure 3C). The cognate elements
of transcriptionally activated TFs will be targeted if they reside within active chromatin
(Figure 3D). The trans targets of transcriptionally repressed TFs will return to the default
accessibility state, in the absence of factors with redundant functions that reinforce the
chromatin state. This cascade can be subject to further perturbation by activating inactive
TFs through environmental factors (e.g. heat shock, hormone treatment, stress, etc.).
Genomic tracking of chromatin and transcription changes throughout a regulatory cascade
will test the validity of the proposed model.
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Inference and prediction of Transcription Factor binding sites
A complete understanding of the DNA and chromatin features that influence TFBS selection
would permit accurate prediction of TFBS intensities using only DNA sequence and
chromatin landscape. Many TFBS models infer TF binding, rather than predict inducible
binding patterns de novo [26,64–66]. These models are developed with data for the
chromatin state concurrent with TF binding, so the effect of preexisting chromatin states
upon TF binding is confounded by the influence of the TF on the local chromatin
environment. These models also use position-specific weight matrices to predict potential
binding sites, which can be problematic if the assumption of independence between
positions in the binding site is not met. Recently, many protein/DNA binding assays have
been developed to directly measure the TF/DNA binding affinity [14,67–69]. These assays
can be combined with in vivo chromatin landscape data to predict de novo TFBS intensity
from chromatin features. For instance, we used PB-seq [14] to measure the binding energy
landscape of all potential binding sites in a genome in a chromatin-free context and
chromatin landscape data from the modENCODE consortium [13] to develop a probabilistic
TF binding model. Our model revealed that the intensity of each modification could be used
to predict more than just whether or not HSF would bind, but also the intensity of binding.
As more chromatin data becomes available, these models will be expanded upon and
refined.

Conclusions
Ultimately, the goal is to understand TF binding and function within a developmental or
regulatory framework. This understanding of networks would allow one to predict the
transcriptional output of binding events and the cascade of regulatory binding and
transcription cycles that follows in normal and disease states. Carefully designed kinetic
experiments that monitor changes in chromatin structure, TF binding, and transcription
throughout stages of development and regulatory networks will be necessary to unravel the
complex cascade of molecular events precipitated by differentiation or response to stimuli.
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Figure 1. DNase I intensity can be modeled using histone marks and TF binding data
DNase I hypersensitivity landscape is inferred by models that use histone modification
profiles and TF profiles. Incorporating non-histone chromatin-bound factors into the model
increases accuracy, which is consistent with the role of TFs having an additive effect upon
DNase I hypersensitivity [5,12].
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Figure 2. HSF discriminates between potential binding sites based on the pre-existing chromatin
state
This region of chromosome 3R contains two strong potential HSF-binding sites (green and
red arrows), measured by an in vitro protein/DNA-binding assay (PB-seq) [14]. Although
the HSF-free motif (red arrow) binds with comparable affinity in vitro (PB-seq), chromatin
structure restricts HSF occupancy in vivo (ChIP-seq). HSEs that are enriched for H4
acetylation and DNase I hypersensitivity during non-HS are preferentially bound by HSF in
vivo (green arrow).

Guertin and Lis Page 11

Curr Opin Genet Dev. Author manuscript; available in PMC 2014 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. DNA sequence directs chromatin structure and allows transcription factor binding to
precipitate regulatory cascades
(A) A CpG island is refractory to higher-order chromatin compaction (unraveled chromatin).
A regulatory or developmental cascade is precipitated by the activation or expression of a
transcription factor (yellow rounded rectangle) targeted to elements within the CpG island.
Another TF remains (pink ellipse) unable to access elements with the H1 linker histone
(green, interior crescents) condensed chromatin. (B) Targeting of the TF to the CpG island
directly or indirectly results in the recruitment of nucleosome remodeling factors (brown
crescent) and histone acetyltransferases (purple ellipse), which further decondenses the
region and allows the other TF (pink ellipse) access to its cognate element. (C) Binding of
the second TF (pink ellipse) directly or indirectly causes the recruitment and productive
elongation of RNA Polymerase II (green pentagon) to a gene encoding a third TF, which is
subsequently transcribed (transparent orange line) and translated (orange rounded rectangle).
This causes further nucleosome loss, histone modifications (orange triangles), and
decondensation of the Region A locus. (D) The translated protein (orange rounded
rectangle), encoded by region A, is targeted in trans to Region B, which is highly acetylated
and contains a transcriptionally engaged paused RNA Polymerase II. This binding event
leads to the release of the paused RNA Polymerase II and activation of the gene.
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